

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF INFORMATION TECHNOLOGY

III Year – I Semester		L	T	P	C
		3	0	0	3
DESIGN AND ANALYSIS OF ALGORITHMS					

Course Objectives:

- To provide an introduction to formalisms to understand, analyze and denote time complexities of algorithms
- To introduce the different algorithmic approaches for problem solving through numerous example problems
- To provide some theoretical grounding in terms of finding the lower bounds of algorithms and the NP-completeness

Course Outcomes:

- Describe asymptotic notation used for denoting performance of algorithms
- Analyze the performance of a given algorithm and denote its time complexity using the asymptotic notation for recursive and non-recursive algorithms
- List and describe various algorithmic approaches
- Solve problems using divide and conquer, greedy, dynamic programming, backtracking and branch and bound algorithmic approaches
- Apply graph search algorithms to real world problems
- Demonstrate an understanding of NP- Completeness theory and lower bound theory

UNIT I

Introduction: Algorithm Definition, Algorithm Specification, performance Analysis, Randomized Algorithms.

Sets & Disjoint set union: introduction, union and find operations.

Basic Traversal & Search Techniques: Techniques for Graphs, connected components and Spanning Trees, Bi-connected components and DFS.

UNIT II

Divide and Conquer: General Method, Defective chessboard, Binary Search, finding the maximum and minimum, Merge sort, Quick sort.

The Greedy Method: The general Method, container loading, knapsack problem, Job sequencing with deadlines, minimum-cost spanning Trees.

UNIT III

Dynamic Programming: The general method, multistage graphs, All pairs-shortest paths, single-source shortest paths: general weights, optimal Binary search trees, 0/1 knapsack, reliability Design, The traveling salesperson problem.

UNIT IV

Backtracking: The General Method, The 8-Queens problem, sum of subsets, Graph coloring, Hamiltonian cycles, knapsack problem.

Branch and Bound: FIFO Branch-and-Bound, LC Branch-and-Bound, 0/1 Knapsack problem, Traveling salesperson problem.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF INFORMATION TECHNOLOGY

UNIT V

NP-Hard and NP-Complete problems: Basic concepts, Cook's Theorem.

String Matching: Introduction, String Matching-Meaning and Application, Naïve String Matching Algorithm, Rabin-Karp Algorithm, Knuth-Morris-Pratt Automata, Tries, Suffix Tree.

Text Books:

- 1) Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekaran, "Fundamentals of Computer Algorithms", 2nd Edition, Universities Press.
- 2) Harsh Bhasin, "Algorithms Design & Analysis", Oxford University Press.

Reference Books:

- 1) Horowitz E. Sahani S: "Fundamentals of Computer Algorithms", 2nd Edition, Galgotia Publications, 2008.
- 2) S. Sridhar, "Design and Analysis of Algorithms", Oxford University Press.

e-Resources:

1) http://nptel.ac.in/courses/106101060/